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a b s t r a c t

The representation of interfaces by means of the algebraic moving-least-squares (AMLS)
technique is addressed. This technique, in which the interface is represented by an uncon-
nected set of points, is interesting for evolving fluid interfaces since there is no surface con-
nectivity. The position of the surface points can thus be updated without concerns about
the quality of any surface triangulation. We introduce a novel AMLS technique especially
designed for evolving-interfaces applications that we denote RAMLS (for Robust AMLS).
The main advantages with respect to previous AMLS techniques are: increased robustness,
computational efficiency, and being free of user-tuned parameters.

Further, we propose a new front-tracking method based on the Lagrangian advection of
the unconnected point set that defines the RAMLS surface. We assume that a background
Eulerian grid is defined with some grid spacing h. The advection of the point set makes the
surface evolve in time. The point cloud can be regenerated at any time (in particular, we
regenerate it each time step) by intersecting the gridlines with the evolved surface, which
guarantees that the density of points on the surface is always well balanced. The intersec-
tion algorithm is essentially a ray-tracing algorithm, well-studied in computer graphics, in
which a line (ray) is traced so as to detect all intersections with a surface. Also, the tracing
of each gridline is independent and can thus be performed in parallel.

Several tests are reported assessing first the accuracy of the proposed RAMLS technique,
and then of the front-tracking method based on it. Comparison with previous Eulerian,
Lagrangian and hybrid techniques encourage further development of the proposed method
for fluid mechanics applications.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

We address in this article the problem of modeling the time evolution of an interface SðtÞ which separates two fluids (A
and B), with the possibility of fluid B being the ambient air (the free-surface case). The problem takes place inside a finite
domain X, with boundary oX.

Purely Lagrangian methods for modeling moving interfaces consist of seeding the interface with marker particles and
moving the particles as dictated by the velocity field. These methods have proved to be of high accuracy in many published
studies [21,45,44,14,35], however with three drawbacks:

� It is difficult to simulate breakup and merging processes of the surface. Topology changes are hard to handle.
� It is difficult to keep the density of particles consistent with the desired level of discretization. They accumulate at some

areas while other areas get depleted of particles. Effective particle creation and deletion strategies are needed to handle
this issue.
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� Most purely Lagrangian methods maintain the connectivity of the particles [45,44,35], needed to reconstruct the free sur-
face from the scattered particles that move with it. This connectivity defines a mesh of the moving interface. If this mesh
gets too distorted the reconstruction becomes unphysical, leading to collapse of the simulation.

The aforementioned drawbacks of Lagrangian methods have made Eulerian methods, such as the volume-of-fluid (VOF)
method [20,32] or the level-set (LS) method [30,33,37,27,29,34] (or combinations thereof [36,39]) to be preferred in the
modeling of complex interfaces undergoing topological changes such as bubble coalescence, wave breaking, etc.
[40,38,47,8,9]. Eulerian methods are based on the advection of a scalar field / defined on the whole flow domain. In the
VOF method this scalar field represents the partial content of fluid A in each grid cell, whereas in the LS method / implicitly
defines the interface as its zero-level set. The improved flexibility of Eulerian methods, however, comes at the expense of a
loss in accuracy due to interpolation errors, together with numerical errors in the transport of /.

The previous considerations have motivated the search of numerical methods that combine the accuracy of Lagrangian
methods with the flexibility of Eulerian ones. Some developments in this direction are related to the method proposed in
this article.

Du et al. [11] combined a purely Lagrangian method with a grid-based reconstruction method which is applied
locally in space and time where topological difficulties arise. Since the marker particles have an associated connec-
tivity structure, the reconstruction of tangled regions of the interface is quite sophisticated, especially in three
dimensions.

Torres and Brackbill [43] developed a point-set method in which front tracking was performed without a connectivity
structure. Their method evolves marker particles according to the velocity field, and then builds a level-set-like function
/ by solving Laplace’s equation on X. By prescribing / ¼ 1 at cells containing marker particles and / ¼ 0 at oX, the resulting
function / equals one inside S, identifying the region occupied by fluid A. A smoothing procedure based on B-splines, fol-
lowed by a correction step, are then applied to / so that one of its level sets passes through the marker particles. They then
regenerate interfacial points as projections of cell centers of an auxiliary finer grid onto the level set of /.

Enright et al. [12], on the other hand, start from an Eulerian level-set method and improve it by incorporating the infor-
mation about the location of the interface carried by a set of Lagrangian particles. More specifically, the information is incor-
porated by merging the interface that results from the Eulerian method with spheres centered at the Lagrangian particles
which, at the beginning of the time step, are tangent to the interface. They adopt a surface merging technique that is
well-established in computer graphics applications. Their method, known as particle level set (PLS) method, has proved quite
successful in many applications [24,29], since topology changes are handled easily by the Eulerian part of the algorithm,
which is a level-set method. Further, the PLS method does not require highly accurate Eulerian solvers for the level-set trans-
port equation [13], since the Lagrangian part corrects the inaccuracies. Another method that uses Lagrangian particles to up-
date the interface is the Lagrangian particle level-set method of Hieber and Koumoutsakos [16], in which a method based on
smooth particle hydrodynamics (SPH) is implemented.

In this article, we explore the potential of moving-least-squares (MLS) [22] implicit representation of surfaces from point
clouds, in the context of modeling interface motion. The proposed method can be viewed as a variant of the front-tracking
method of Du et al. [11] without any connectivity of the marker particles. The maker particles follow a Lagrangian motion,
but the interface is not assumed to exactly pass through them. Instead, the particles define the interface in an MLS sense. This
methodology avoids the cost involved in the linear systems solved by Torres and Brackbill [43] to build /. Further, from this
implicit MLS representation ofSðtÞwe simultaneously perform the re-generation of points and the construction of a level-set-
like function / that indicates the region occupied by each fluid. This is done by performing a ray-tracing-like [1,46] detection of
SðtÞ along the gridlines of a fixed Cartesian mesh Th. The grid size h of Th is the only parameter that governs the approxima-
tion of SðtÞ. The distance between marker particles is automatically kept of order h, and features of dimension smaller than h
are automatically ignored as in Eulerian methods, but the tracking of the interface remains Lagrangian and thus highly accu-
rate. As compared to the PLS method, on the other hand, the cost of the Eulerian step is avoided and the particles are much less
in number and more easily regenerated, since they actually lie on the surface instead of at the centers of tangent spheres.

The plan of this article is as follows: in Section 2 we remind the definitions of implicit algebraic MLS surfaces and perform
some convergence tests to evaluate their accuracy. In Section 3 we introduce a parameter-free variant of algebraic MLS sur-
faces with improved robustness. Section 4 describes the proposed front-tracking algorithm based on MLS surfaces and pro-
vides details of its implementation. Extensive numerical testing is reported in Section 5, while Section 6 is devoted to the
conclusions.
2. Implicit algebraic moving-least-squares surfaces

2.1. Basic definitions

Moving-least-squares (MLS) [22] is a method of producing continuous functions from a set of unorganized sampled point
values based on the calculation of a weighted-least-squares approximation. In computer graphics, MLS is being used to pro-
duce smooth surfaces from point clouds, defining the MLS surfaces [4]. Firstly proposed by Alexa et al. [3] as the set of fixed
points of the Levin’s projection [23], MLS surfaces are becoming a well-established meshless method for modeling and ren-
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dering point clouds. Our scope is related to the implicit version of MLS surfaces, in which the resulting surface is given as the
zero-level set of a so-called implicit function F 2 C0ðUÞ, where U � Rn is an open neighborhood of the point cloud.

Let us consider a finite set of points P ¼ fp1; . . . ;pmg, and assume that the points are almost regularly spaced at distance
h. We aim at defining a function F such that its zero-level set is a surface S that approximates the point cloud P. The first
step is to define, at any given point x 2 U,
FðxÞ ¼
XN

k¼1

akðxÞqkðxÞ; ð1Þ
where the basis fqkgk¼1;N consists of polynomials. We will concentrate on the specific choice considered by Guennebaud and
Gross [15]:
N ¼ 5; q1ðxÞ ¼ 1; q2ðxÞ ¼ x1; q3ðxÞ ¼ x2; q4ðxÞ ¼ x3; q5ðxÞ ¼ x2
1 þ x2

2 þ x2
3: ð2Þ
Remark 1. The specific basis given by (2) leads to an approximation based on three-dimensional spheres. Though the method
will be detailed for this approximation, it is evident how to modify it for two-dimensional cases (circles), or for
approximations based in planes (3D) or straight lines (2D). For example, in this latter case N ¼ 3 and the basis is given by q1,
q2 and q3 above. We later on show examples of these alternative bases.

Denoting by a the N-tuple of functions ða1;a2; . . . ;aNÞ, it is clear that F is completely defined by a through Eq. (1). When-
ever this dependence needs to be made explicit, we indicate a as a subindex; e.g., Fa. Each a (remember that it consists of
functions of x) also defines, implicitly, the surface Sa given by
Sa ¼ fx 2 UjFaðxÞ ¼ 0g: ð3Þ
We now address the choice of aðxÞ. This choice should make the surface Sa to be close to the set of points P ¼ fp1; . . . ;pmg.
For this purpose, we will adopt the algebraic MLS approach of Guennebaud and Gross [15].

2.2. Implicit algebraic least-squares spheres

Consider first the case in which each ak is a constant. In this case, Sa is a sphere. Denoting by dðpi;SaÞ the (signed) geo-
metric distance from pi to this sphere, an optimal set of coefficients a� can be defined as
a� ¼ arg min
b2RN

JðbÞ; with JðbÞ ¼
Xm

i¼1

wijdðpi;SbÞj2; ð4Þ
where we have introduced the set of non-negative weights fwigi¼1;...;m for later use. For the time being, the reader may think
of all wi’s as being equal to one for simplicity.

Unfortunately, the minimization of J given by (4) is numerically inconvenient. The algebraic approach [31,42], instead,
defines a as
a ¼ arg min
b2Q

eJðbÞ; with eJðbÞ ¼Xm

i¼1

wijFbðpiÞj
2 ð5Þ
subject to
Q ¼ fb 2 RNjb2
2 þ b2

3 þ b2
4 � 4b1b5 ¼ 1g: ð6Þ
The rationale behind this is that, on Sb,
krFbk2 ¼ b2
2 þ b2

3 þ b2
4 � 4b1b5 ð7Þ
and thus FbðpiÞ ¼ dðpi;SbÞ þ Oðjdðpi;SbÞj2Þ for any b 2 Q . As a consequence, if the set of points P is not very far from a sphere,
the minimization process defined by (5) and (6) will yield a such that Sa is very close to the ‘‘optimal” sphere Sa� defined by
(4). Moreover, for any x sufficiently close to Sa the value FaðxÞ will approximate the signed distance dðx;SaÞ; i.e.,
FaðxÞ ¼ dðx;SaÞ þ Oðjdðx;SaÞj2Þ: ð8Þ
The advantage of the modified minimization problem (5) and (6) is that its solution is straightforward [41,42]. In fact, since
FbðpiÞ ¼
XN

k¼1

bkqkðpiÞ; ð9Þ
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it follows that
eJðbÞ ¼Xm

i¼1

wi

XN

k¼1

bkqkðpiÞ
�����

�����
2

¼
XN

k;‘¼1

bkb‘
Xm

i¼1

wiqkðpiÞq‘ðpiÞ
 !

¼bTMb; ð10Þ
where we have introduced the matrix M,
Mk‘ ¼
Xm

i¼1

wiqkðpiÞq‘ðpiÞ; ð11Þ
independent of b, to make evident that eJ is a quadratic form in RN .
Further, notice that the constraint in the definition of Q (Eq. (6)) is also quadratic [41,42,15]. In fact, defining a matrix C in

which the only non-zero elements are
C22 ¼ C33 ¼ C44 ¼ 1; C15 ¼ C51 ¼ �2
we can recast the minimization problem (5) and (6) as
a ¼ arg min b2RN

bTCb¼1

bTMb ð12Þ
Denoting by k the Lagrange multiplier associated to the constraint bTCb ¼ 1, the N-tuple a is readily obtained as a general-
ized eigenvector solution of
Ma ¼ kCa; ð13Þ
corresponding to the smallest eigenvalue k (since eJðaÞ ¼ k), and normalized so that aTCa ¼ 1. The implicit algebraic least-
squares approximation of the set of points P with weights fwigi¼1;...;m is thus defined as the zero-level set Sa with a as de-
fined above, and the (signed) algebraic distance from a point x to Sa is given by FaðxÞ, which is a second-order approxima-
tion to dðx;SaÞ if x is close to Sa.

2.3. Algebraic moving-least-squares (AMLS) surfaces

Since the methodology described in the previous section generates nothing but spheres, we still have some way to go to
describe a methodology that approximates point sets of arbitrary shape. The idea is quite simple, since the only added ingre-
dient is to make the weights fwigi¼1;...;m depend on x.

We begin by defining a continuous non-negative localization function w : Rþ ! Rþ satisfying:
wð0Þ ¼ 1; w0ðsÞ 6 0; wðs!1Þ ¼ 0: ð14Þ
Typically we adopt:
wðsÞ ¼ ð1� s2Þ4 if s < 1;
0 otherwise:

(
ð15Þ
An influence radius D is also defined, assumed constant for simplicity, which leads to a specific domain U in which the im-
plicit function F will be computed, namely,
U ¼ fx 2 Rnj the number of points p 2 P with kx� pk < D is P 4g: ð16Þ
The need for at least 4 points at distance smaller than D is to ensure that the matrix M be non-singular (minimum number of
points required to determine a sphere). In fact, there exists the additional condition that these four points cannot belong to a
common circle.

Now, for each x 2 U, define the set of weights fwiðxÞgi¼1;...;m as
wiðxÞ ¼ w
kx� pik

D

� �
ð17Þ
and with these weights compute the matrix M defined by Eq. (11). Then solve the eigenproblem (13), yielding the coeffi-
cients aðxÞ, which depend on x because M does. The implicit function at x is then given by Eq. (1), and, as discussed in Section
2.2, is the signed algebraic distance to the sphere that fits, in a least-squares sense and with weights fwiðxÞgi¼1;...;m, the set P.

The continuity of F for arbitrary point sets is far from obvious. The zero-level-set of F,
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S ¼ fx 2 UjFðxÞ ¼ 0g; ð18Þ
which we define as the surface approximating the point cloud P, is thus not guaranteed to be an ðn� 1Þth dimensional man-
ifold. We will nevertheless call S the AMLS approximating surface (or curve, in 2D) of the point cloud.

Some examples of F and S are given in Fig. 1. In this figure, and throughout this article, all of the computations are made
with D ¼ 3h, where h is the average distance between points. This choice was made after many numerical experiments with
different values of D, some of which are shown in Fig. 2. The smoothing effect of increasing D is evident from that figure, so
that D should be kept as small as possible. However, taking D too small may lead to spurious holes in the set U and thus in the
curve/surface S.
Examples of AMLS implicit functions F (blue contours) and AMLS approximating curves S (black lines) for two point sets (black squares). (a)
ly-perturbed samples of a straight segment (the vertical scale has been expanded by a factor of 7.5). (b) Randomly-perturbed samples of a corner.

erpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)



Fig. 2. Effect of increasing D on the shape of AMLS approximating curves. Shown are the following cases: D ¼ 3h (black), D ¼ 5h (green), D ¼ 7h (gray) and
D ¼ 10h (pink). (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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2.4. The issue of orientation

A crucial issue in numerical implementations is the orientation of aðxÞ. Notice from Eq. (13) that the vector of coefficients
aðxÞ is defined up to a multiplication by �1, and that such a multiplication has no effect on Sa but changes the sign of FðxÞ.
For any algorithm trying to detect the intersection of Sa with a given line (or ray), this indeterminacy in aðxÞ leads to spu-
rious intersections. In fact, this difficulty turns out to be equivalent to that of choosing the orientation of the unit normal, for
which some techniques exist [15,17]. The technique we adopt here is especially suited for our application in front tracking.

We assume that a set of approximate normals f~nig (i ¼ 1; . . . ;m) is available at the points in P. This set of approximate nor-
mals is only used to define the orientation, so that they need not be accurate. For a given point x, we define
gaðxÞ ¼ ða2ðxÞ þ 2a5ðxÞx1;a3ðxÞ þ 2a5ðxÞx2;a4ðxÞ þ 2a5ðxÞx3Þ: ð19Þ
Notice that gaðxÞ is the gradient of the polynomial that generates the best-fit sphere with weights fwiðxÞgi¼1;...;m. We also de-
fine, at x, the weighted-average normal
~nðxÞ ¼
Xm

i¼1

wiðxÞ~ni: ð20Þ
Finally, if the angle between gaðxÞ and ~nðxÞ is greater than p=2, then aðxÞ is replaced by �aðxÞ; otherwise it is left unchanged.
We stress that for the AMLS method, especially in the presence of sharp features, the choice of orientation of aðxÞ is crit-

ical. The technique above works quite well in most cases, but difficulties may appear near sharp features, as discussed in
Section 2.6.

2.5. Convergence study of AMLS surfaces

The sense in which an AMLS surface would converge (or fail to do so) to a given exact surface depends on the application.
If the point cloud originates from noisy measurements of the topography of an object, a statistical approach is needed to
define convergence. In our case, as will be justified in later sections, we assume that the points in P lie exactly on some sur-
face R. Our knowledge of R reduces to the set of points P, from which we want to build a surface S which approximates R as
good as possible.

Let us define the Hausdorff distance [26] between two surfaces as
DðR;SÞ ¼maxfmax
x2R

min
y2S
kx� yk;max

x2S
min
y2R
kx� ykg: ð21Þ
Let Ph be a family of regularly-spaced point clouds obtained by sampling the ‘‘exact” surface R, parameterized by the average
spacing h. Also, let Sh be the associated family of AMLS approximating surfaces, obtained by the method described in Section
2.3. The question that arises is, thus, whether DðR;ShÞ goes to zero as h! 0 and, if so, what the convergence rate r is in the sense
DðR;ShÞ ¼ OðhrÞ: ð22Þ
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2.5.1. Two-dimensional ellipse
We have examined the convergence for the case of the two-dimensional ellipse R given by
Fig. 3.
DðR;Sh
x2
1

9
þ x2

2

4
¼ 1:
For this purpose, we have generated point sets Ph on the ellipse with average distances h ¼ 1:5;0:75;0:375; . . . ;2:34� 10�2,
corresponding to Nh = 14, 27, 54, . . ., 860 points. The point set corresponding to h ¼ 1:5, together with the corresponding
AMLS curve, is shown in Fig. 3a.

In Fig. 3b we show the geometric error DðR;ShÞ as a function of h. The convergence is seen to be Oðh3Þ. With just 54 sam-
pling points, at an average distance of 0:375, the maximum distance between Sh and R is already as small as 7:3� 10�4.

In this 2D case the implicit function is given by
FðxÞ ¼ a1ðxÞ þ a2ðxÞx1 þ a3ðxÞx2 þ a4ðxÞðx2
1 þ x2

2Þ: ð23Þ
At each point x of Sh we also compute the AMLS normal and curvature. The AMLS normal naðxÞ corresponding to the coef-
ficients aðxÞ is defined as the normal to the best approximating circle at x, and is given by
naðxÞ ¼ ða2ðxÞ þ 2a4ðxÞx1;a3ðxÞ þ 2a4ðxÞx2Þ: ð24Þ
Denoting by yx the point in R that is closest to x, the error in the normals is defined by
ENðR;ShÞ ¼ max
x2Sh

knaðxÞ � nðyxÞk; ð25Þ
where nðyxÞ is the exact normal to R at yx. The AMLS curvature is the inverse of the radius of the best approximating circle,
and is given by
(a) Point set Ph corresponding to h ¼ 1:5 for the 2D ellipse, together with the resulting circles-based AMLS curve Sh . (b) Convergence plots of
Þ (denoted by geometric error), of ENðR;ShÞ (denoted by normals error), and of ECðR;ShÞ (denoted by curvature error).
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jaðxÞ ¼
a2

2ðxÞ þ a2
3ðxÞ

4a2
4ðxÞ

� a1ðxÞ
a4ðxÞ

� ��1
2

: ð26Þ
The curvature error is defined as
ECðR;ShÞ ¼ max
x2Sh

kjaðxÞ � jðyxÞk; ð27Þ
where jðyxÞ is the exact curvature of R at yx.
Plots of EN and EC as functions of h are shown in Fig. 3b. Notice from their definitions that naðxÞ and jaðxÞ are not the

normal and curvature that correspond to Sh, they are just those corresponding to the AMLS circle at x. In fact, the true nor-
mal and curvature of Sh contain derivatives of aðxÞ, which would be very cumbersome to compute (further details can be
found in [2,15]). Notwithstanding, EN converges as h2 and EC as h, as one would expect from the true normal and curvature.

The previous example has illustrated the ability of 2D, circles-based AMLS curves to approximate smooth curves in two-
dimensions. It is interesting to consider the behavior of the AMLS approximation based in straight lines in the same example.
The calculation procedure is analogous to what has already been described, with just a1, a2 and a3 as non-zero coefficients.
Also, the AMLS curvature is not available since the local fitting is done with a straight line. Using the same point set as in the
circles-based case, the resulting Sh is shown in Fig. 4a. Plots of DðR;ShÞ and of ENðR;ShÞ as functions of h are shown in
Fig. 4b. In this case the geometric error DðR;ShÞ behaves as h2, while the normals error ENðR;ShÞ behaves as h. One order
of convergence is thus lost when passing from circles-based to straight-lines-based AMLS curves, which is not surprising.

2.5.2. Three-dimensional ellipsoid
We have performed an analogous convergence study for the 3D ellipsoid R given by
x2
1

16
þ x2

2

9
þ x2

3

4
¼ 1: ð28Þ
(a) Point set Ph corresponding to h ¼ 1:5 for the 2D ellipse, together with the resulting straight-line-based AMLS curve Sh . (b) Convergence plots of
Þ (denoted by geometric error) and of ENðR;ShÞ (denoted by normals error).
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The point sets Ph, as before, had average spacing h ¼ 0:75;0:375; . . . ;2:34� 10�2, which corresponded to Nh = 265, 1085,
4369, . . ., 276,414 points on R, respectively.

The convergence plots for the spheres-based AMLS method are shown in Fig. 5a. Notice that in three dimensions the
expressions for the AMLS normals and curvature are
Fig. 5.
for the
unavail
naðxÞ ¼ ða2ðxÞ þ 2a5ðxÞx1;a3ðxÞ þ 2a5ðxÞx2;a4ðxÞ þ 2a5ðxÞx3Þ ð29Þ
and
jaðxÞ ¼
a2

2ðxÞ þ a2
3ðxÞ þ a2

4ðxÞ
4a2

5ðxÞ
� a1ðxÞ

a5ðxÞ

� ��1
2

: ð30Þ
The first conclusion from the error plots is that, in contrast with the 2D case, in three dimensions the convergence rate of the
geometric error drops to quadratic. Clearly, the polynomial basis, with only one quadratic element, is too poor to achieve
third-order convergence. The approximation is nevertheless quite good. With just 4369 points, at an average distance of
h ¼ 0:375, the distance between R and Sh is as small as 2:3� 10�3, two orders of magnitude smaller than the distance be-
tween samples. The normals error EN behaves as OðhÞ, and turns out to be smaller than 2% when h ¼ 0:375. The AMLS cur-
vature fails to converge to the exact one ðEC ¼ Oð1ÞÞ. This is a drawback that needs to be fixed before applications involving
capillary forces could be performed, for example. The study of a convergent approximation of the curvature based on the
AMLS approach is however left outside the scope of this article. If needed, a simple least-squares approach on a rotated
frame, as adopted by Du et al. [11], can be applied.

For the same point sets as before, the planes-based AMLS surfaces were also constructed. The convergence plots are
shown in Fig. 5b. The rates of convergence are the same as for the spheres-based approximation, and the error in the nor-
mals, ENðR;ShÞ, is quite similar. However, the geometric error DðR;ShÞ is larger by a factor of about 10, indicating that the
quadratic term improves the approximation. Finally, in Figs. 6a and b we present the planes-based and spheres-based AMLS
approximations corresponding to h ¼ 0:75 (265 points), respectively. The convexity of the ellipsoid makes the planes-based
AMLS to leave the point set outside it, while the sphere-based ones shows a remarkable fit for such a reduced number of
points.
Convergence plots of DðR;ShÞ (denoted by geometric error), of ENðR;ShÞ (denoted by normals error), and of ECðR;ShÞ (denoted by curvature error)
case of the 3D ellipsoid. (a) Spheres-based AMLS approximation. (b) Planes-based AMLS approximation (in this approximation the AMLS curvature is
able).
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2.6. Sharp features

In fluid dynamics applications the interfaces evolve in time, possibly exhibiting sharp features or even topological
changes along their evolution. The ability of a method to deal with non-smooth surfaces has a strong impact on the robust-
ness of the overall simulation methodology. Less accurate methods, such as the level-set method, are often favored in tech-
nological applications on the basis of robustness considerations.

In this section we study the ability of the AMLS method presented above to deal with non-smooth geometries. Notice
however that, for the time being, the surface R is fixed in space. We simply take samples of R at some average spatial sam-
pling rate h and reconstruct the AMLS surface Sh that results from the sample-points set Ph.

As case study we analyze a 3D surface R obtained by removing one quarter of a sphere of unit radius. We denote this case
by ‘‘3/4-sphere case”. We have built point sets Ph by sampling the 3/4-sphere with average spacing h ’ 0:12 (1030 points),
h ’ 0:08 (2031 points) and h ’ 0:05 (4748 points). In Fig. 7 we show the AMLS surfaces obtained from these point sets. It is
clear that the neighborhoods of the sharp corners, where the two planar surfaces and the spherical sector meet, challenge the
approximation capabilities of the AMLS method. In fact, an artifact can be observed at these corners, meaning a feature of the
surface Sh that is not present in the original surface R. These artifacts constitute a lack of robustness of the method, since
when coupled with a flow solver may lead to unphysical, possibly unstable, behavior.

3. AMLS surfaces with improved robustness

3.1. RAMLS surfaces

The last paragraph of the previous section showed that some improvement in the robustness of the AMLS methodology
described so far is in order.

This issue has already been addressed by Guennebaud and Gross [15], who proposed the following two-step modification
of the algebraic AMLS method described in Sections 2.1–2.3:

Step A Compute the AMLS normals for all pi 2 Ph: This is done by computing a from (13), but just at the points pi in the set
Ph. The normals Ni ¼ naðpiÞ, i ¼ 1; . . . ;m are then obtained from (29) in the 3D case, and from (24) in the 2D case.
Step B Compute the implicit function FðxÞ for x 2 U: For this purpose, the coefficients aðxÞ are not found by minimizing eJ as
defined in (5) and (6). Instead, aðxÞ is found as
Fig. 6.
aðxÞ ¼ arg min
b2RN

GðbÞ ð31Þ
with
GðbÞ ¼
Xm

i¼1

wijFbðpiÞj
2 þ K

Xm

i¼1

wiknbðpiÞ � Nik2
: ð32Þ
Compared to the Formulation (5) and (6), we observe that the minimization in (31) is unrestricted. The condition
krFbk ’ 1 at Sb, which makes Fb to approximate the signed distance, is in fact enforced by the second term in GðbÞ, Eq.
Ellipsoids generated by (a) planes-based and (b) spheres-based AMLS technique. The point set consists of 265 points at an average distance h ¼ 0:75.



Fig. 7. Approximation of the 3/4-sphere case with AMLS surfaces based on point clouds of 1030 points (a), of 2031 points (b) and of 4748 points (c). The
artifacts on the top show how the implicit function can fail.
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(32). This term penalizes the deviations of the AMLS normals at the sample points calculated from aðxÞ from the normals
calculated in Step A of the algorithm. Since the second step consists of an unconstrained minimization problem, its algebraic
burden is simply that of solving a small linear system, much smaller than that of solving the eigenvalue problem (13).

As in any penalization method, the choice of the constant K in (32) is not obvious and may affect both the accuracy and
the numerical stability of the method. Guennebaud and Gross use K ¼ 106h2 without further justification. We propose here a
variant which contains no free parameter. In fact, it can be regarded as the limit of the formulation above when K !1. A key
observation is that the second term in G (Eq. (32)) does not depend on a1, so that when K is very large the only role of the first
term is to determine a1. We will thus split the coefficient arrays into two parts separating the first coefficient, for example,
b 2 RN; b ¼ ðb1; b̂Þ;
where b̂ ¼ ðb2; . . . ; bNÞ belongs to RN�1. Since for any coefficient vector b the normal at any point x defined by (29) does not
depend on b1, we also denote it by nb̂.

We are now in a position to detail the proposed AMLS reconstruction by describing the algorithm that computes aðxÞ at a
generic x 2 U. We will refer to this approximation method as RAMLS reconstruction (for Robust Algebraic MLS). The RAMLS
implicit function, which is still given by Eq. (1), will still be denoted by FðxÞ, since the only difference between the AMLS and
RAMLS methods lies in the choice of the coefficients aðxÞ. Also, the RAMLS surface, still denoted by S, remains the zero-level
set of F. To avoid confusion, of course, each result will be given specifying if it corresponds to the AMLS or to the RAMLS
method.

Proposed algorithm (RAMLS reconstruction):

Step A Compute the AMLS normals Ni ¼ naðpiÞ=knaðpiÞk for all pi 2 Ph. This is done by computing a from (13), but just at
the points pi. Then, the Nis are obtained from (29) in the 3D case, and from (24) in the 2D case. Since at pi we have an
approximate normal ~ni, the orientation of Ni is naturally taken such that the angle between Ni and ~ni be smaller than p=2.
Step B Compute the implicit function FðxÞ for x 2 U. The computation of the coefficients aðxÞ is split into two substeps as
follows:
Substep B.1 Determine âðxÞ as

âðxÞ ¼ arg min
b̂2RN�1

Xm

i¼1

wiknb̂ðpiÞ � Nik2
: ð33Þ
As a consequence, âðxÞ is the solution of the linear system
Aâ ¼ b ð34Þ
where
Ak‘ ¼
Xm

i¼1

wirqkðpiÞ � rq‘ðpiÞ ð35Þ

bk ¼
Xm

i¼1

wirqkðpiÞ �Ni ð36Þ
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and in particular, for the spheres-based method (basis defined in Eq. (2)) and denoting by ðXi;Yi; ZiÞ the coordinates of pi and
by ðNi1;Ni2;Ni3Þ the components of Ni,
A ¼

Pm
i¼1

wi 0 0 2
Pm
i¼1

wiXi

0
Pm
i¼1

wi 0 2
Pm
i¼1

wiYi

0 0
Pm
i¼1

wi 2
Pm
i¼1

wiZi

2
Pm
i¼1

wiXi 2
Pm
i¼1

wiYi 2
Pm
i¼1

wiZi 4
Pm
i¼1

wikpik
2

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
ð37Þ

b ¼

Pm
i¼1

wiNi1

Pm
i¼1

wiNi2

Pm
i¼1

wiNi3

2
Pm
i¼1

wipi �Ni

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
ð38Þ
Notice the simplicity of the structure of matrix A, which allows for it to be solved by hand.

Substep B.2 Now that âðxÞ ¼ ða2ðxÞ; . . . ;aNðxÞÞ is known, we obtain a1ðxÞ by minimizingXm

i¼1

wijFbðpiÞj
2 ð39Þ
over all the b such that b̂ ¼ âðxÞ. The solution is, simply,
a1ðxÞ ¼ �
Pm

i¼1wi
PN

k¼2akðxÞqkðpiÞ
� �
Pm

i¼1wi
: ð40Þ
Notice that the numerator in the right-hand side of (40) is
Pm

i¼1wiFbðpiÞ taking b ¼ ð0;a2ðxÞ; . . . ;aNðxÞÞ. For the specific case
of the spheres-based method the above equation reads
a1ðxÞ ¼ �
Pm

i¼1wi½a2ðxÞXi þ a3ðxÞYi þ a4ðxÞZi þ a5ðxÞkpik
2�Pm

i¼1wi
: ð41Þ

The surface S defined by the RAMLS method (or RAMLS surfaces) is thus given by the zero-level set of FðxÞ, defined by Eq.
(1) with the coefficients fakðxÞg (k ¼ 1; . . . ;N) obtained from the algorithm proposed above. Once again, the continuity of F is
far from obvious and it is only conjectured that S is a manifold. Moreover, notice from (33) that the determination of the
coefficients a2; . . . ;aN is based solely on the approximation of the normals and not on the minimization of the algebraic dis-
tance. Since this could affect the convergence rate of the method, several numerical experiments are reported in Section 3.2.

To conclude the presentation of RAMLS surfaces, let us mention two of their advantages:

� Their computational cost is much smaller than that of AMLS surfaces, as already discussed by Guennebaud and Gross [15].
In fact, to reconstruct the surface the number of points x at which F needs to be evaluated is much larger than the number
of points p in P. In the AMLS approach, an eigensystem needs to be solved for each x, while in the RAMLS approach eigen-
systems are only solved for each p and then the computation of F at each x involves just the solution of a linear system of
dimension N � 1.

� The issue of orientation discussed in Section 2.4 is much alleviated. In the AMLS approach the orientation must be decided
for each x at which F needs to be evaluated. This decision is based on the weighted-average of approximate normals
defined in (20), which is quite arbitrary and leads to difficulties near sharp features. In the RAMLS approach the orienta-
tion needs to be defined just at the points p in P. Since the approximate normals are given in P, no ambiguity exists.

3.2. Accuracy of RAMLS surfaces

We have conducted exactly the same tests of Section 3 with the RAMLS method: the 2D ellipse, the 3D ellipsoid, and the
3/4-sphere. The RAMLS approximations of normal vector and curvature are given by the same formulae as for the AMLS
method (Eqs. (24), (26), (29) and (30)), though obviously with the corresponding coefficients aðxÞ. The convergence plots
for the first two cases are shown in Figs. 8b and 9b, respectively. Clearly, the same behavior is observed as for the AMLS



Fig. 8. Approximation of the 2D ellipse with RAMLS curve. (a) Point set Ph corresponding to h ¼ 1:5 together with the resulting circles-based RAMLS curve.
(b) Convergence plots of DðR;ShÞ (denoted by geometric error), of ENðR;ShÞ (denoted by normals error), and of ECðR;ShÞ (denoted by curvature error).
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method. The geometric error behaves as Oðh3Þ in 2D for the circles-based RAMLS method, while it behaves as Oðh2Þ in 3D for
the spheres-based RAMLS method. In particular, and contrary to what is stated in [15], the RAMLS estimate of the curvature
(30) does not converge to the exact one in 3D.

The improvement in robustness of RAMLS surfaces as compared to AMLS ones is illustrated in Fig. 10 (compare it to
Fig. 7). The artifacts produced by the AMLS method near the corners are spurious zeros of F mainly due to errors in the choice
of orientation of a. As discussed in the last section, the orientation issue is much alleviated in the RAMLS approach, and the
artifacts do not appear at all. Finally, Fig. 11 presents the RAMLS approximations of the same data sets in Fig. 1. It can be
noticed that RAMLS curves/surfaces are less sensitive to the perturbations in the point set.

4. Front tracking with RAMLS surfaces

4.1. The Algorithm

Let us now introduce a front-tracking method based on RAMLS surfaces. We consider the three-dimensional case, since its
two-dimensional analog is easily inferred from it. Inside a bounded domain X � R3, a closed initial surface Sð0Þ � X is given,
together with a C1 velocity field vðx; tÞ for all x 2 X, t 2 ½0; T�, where T is the simulation time. The Lagrangian trajectory
uðx; s; tÞ of a particle that is at x at time s and moves with the velocity field v is the solution of
ou

ot
ðx; s; tÞ ¼ vðuðx; s; tÞ; tÞ; uðx; s; sÞ ¼ x ð42Þ
and the addressed problem is that of finding SðtÞ defined by
SðtÞ ¼ fy 2 Xjy ¼ uðx;0; tÞ;x 2Sð0Þg: ð43Þ
Notice that we are assuming that SðtÞ � X for all t 2 ½0; T�.



Fig. 9. Approximation of the 3D ellipsoid with RAMLS surfaces. (a) Point set Ph corresponding to h ¼ 0:75 together with the resulting spheres-based RAMLS
surface. (b) Convergence plots of DðR;ShÞ (denoted by geometric error), of ENðR;ShÞ (denoted by normals error), and of ECðR;ShÞ (denoted by curvature
error).

Fig. 10. Approximation of the 3/4-sphere case with RAMLS surfaces based on point clouds of 1030 points (a), of 2031 points (b) and of 4748 points (c).
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The discretization starts with the definition of a structured mesh in X. We consider here a Cartesian mesh Th with uni-
form spacing h, though extension to non-uniform, curvilinear grids is possible. This mesh, in fact, is only used to define a set
Rh of lines (or ‘‘rays”, as called in computer graphics):
Rh ¼ R1h [ R2h [ R3h; ð44Þ
where the sets R1h, R2h and R3h, which are aligned with the x1-, x2-, and x3-axes, respectively, are given by
R1h ¼
[

j;k2Z
r1jk;r1jk ¼ fx ¼ ðx1; x2; x3Þ 2 X; x2 ¼ jh; x3 ¼ khg ð45Þ

R2h ¼
[

i;k2Z
r2ik;r2ik ¼ fx ¼ ðx1; x2; x3Þ 2 X; x1 ¼ ih; x3 ¼ khg ð46Þ

R3h ¼
[
i;j2Z

r3ij;r3ij ¼ fx ¼ ðx1; x2; x3Þ 2 X; x1 ¼ ih; x2 ¼ jhg: ð47Þ



Fig. 11. RAMLS reconstructions of perturbed samples of (a) a straight line and (b) a corner. Compare to the analogous AMLS reconstructions shown in Fig. 1.
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The set of rays Rh, in turn, defines a set of points Qhð0Þ as the intersection of Rh with Sð0Þ; i.e.,
Qhð0Þ ¼ Rh \Sð0Þ: ð48Þ
The set of points Qhð0Þ is then evolved in time as Lagrangian particles from t ¼ 0 to t ¼ Dt, where Dt is the time step, by solv-
ing (42), to yield PhðDtÞ:
PhðDtÞ ¼ uðQhð0Þ;0;DtÞ ¼ fy 2 Xjy ¼ uðx;0;DtÞ;x 2 Qhð0Þg; ð49Þ
where we have introduced the notation uðQhðsÞ; s; sþ DtÞ for the set of points obtained by moving QhðsÞ along the trajectories
induced by the velocity field v from time s to sþ Dt.

The set of points PhðDtÞ, finally, defines the updated surface ShðDtÞ by means of the RAMLS reconstruction defined in
Section 3.1. Denoting by SRAMLS the operator that assigns to a set of points its RAMLS-reconstructed surface, this operation
reads



Fig
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ShðDtÞ ¼ SRAMLSðPhðDtÞÞ: ð50Þ
An updated surface is then available, and the procedure can be repeated for another time step. The proposed method is thus
defined as follows:

Initialization: Define the set of rays Rh, the time step Dt, and the initial surface Sð0Þ.
Step 0: Define Qhð0Þ ¼ Rh \Sð0Þ.
Step 1: With QhðtÞ known, compute the trajectories of all points/particles in QhðtÞ from t to t þ Dt. Define
Phðt þ DtÞ ¼ uðQhðtÞ; t; t þ DtÞ: ð51Þ

Step 2: Let Shðt þ DtÞ be the RAMLS-generated surface associated to Phðt þ DtÞ (i.e., Shðt þ DtÞ ¼ SRAMLSðPhðt þ DtÞÞ):
compute Qhðt þ DtÞ as the intersection of Rh with Shðt þ DtÞ,

Qhðt þ DtÞ ¼ Rh \Shðt þ DtÞ: ð52Þ

Step 3: Set t  t þ Dt and go back to Step 1.
Remark 2. To perform Step 2 above, an approximate normal ~ni is needed at each point pi 2 Phðt þ DtÞ to define the
orientation in Step A of the RAMLS reconstruction algorithm. We simply choose as ~ni the RAMLS normal computed at the
same Lagrangian point/particle before the transport; i.e., at time t.

One time step of the method can thus be summarized as the displacement of the point/particle set along trajectories fol-
lowed by the intersection of the rays with the surface defined by the displaced points/particles to generate a new point set (with
which the next time step will be initiated). The first of these tasks (Step 1 above) consists of solving the ordinary differential
equation (42) in time, for which a standard Runge–Kutta scheme was adopted. The second task (Step 2), which is unfrequent
in computational mechanics, is sketched in Fig. 12. Further details about its implementation are provided in Section 4.2.

4.2. Implementation of the intersection step

The intersection task (Step 2) is similar to the ray-tracing methodology [1,46] used to compute total illuminance in com-
puter-graphics. In our case, as happens with illuminance computations with semi-transparent surfaces [1], not just the first
but all intersections taking place along the ray need to be computed. In terms of the implicit function F, for each ray r 2 Rh we
need to find all points x 2 r such that FðxÞ ¼ 0.

The design of the intersection algorithm is based on two issues: first, that the implicit function F is only defined in a
neighborhood U of Shðt þ DtÞ; and second, that the evaluation of F at a point is computationally expensive (about 1000
FLOPS in 3D).

Let B be the set of spheres of radius h around the points pi in Phðt þ DtÞ; i.e.,
B ¼ fbi : x 2 bi ) kx� pik 6 h;pi 2 Phðt þ DtÞ; i 2 1; . . . ;mg ð53Þ
and let V be their union ðV ¼
Sm

i¼1biÞ. Since by construction for any q 2 QhðtÞ there exists another point p 2 QhðtÞ such that
kq� pk <

ffiffiffi
3
p

h, then for Dt small enough it can be guaranteed that Shðt þ DtÞ � V � U. The idea is to first analytically com-
pute the segment pinpout, defined as the intersection of the ray r with a sphere bi 2 B, and then find the zero of F in this seg-
ment by the regula-falsi method.
. 12. Sketch of the sets of rays (R1h , R2h) which, intersecting the updated RAMLS-based curve Shðt þ DtÞ define the new point set Qhðt þ DtÞ.
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Algorithmically, Step 2 in the proposed method is thus implemented as follows:

Step 2:
Fig. 13.
sphere.
2.0: Pre-processing
2.0.1: Remove points from Phðt þ DtÞ so that no two points are at a distance smaller than h

2. The resulting set will
also be denoted by Phðt þ DtÞ, since no confusion can arise.
2.0.2: For each pi 2 Phðt þ DtÞ compute the normal Ni as described in Step A of the RAMLS reconstruction
algorithm.

2.1: For each ray r 2 Rh

2.1.1: Find the subset of spheres W � B satisfying bi \ r 6¼ ;
2.1.2: For each bi 2W,
2.1.2.1: Compute the two point intersections pin and pout between r and bi. Evaluate F at pin and pout, named
FðpinÞ and FðpoutÞ using Step B of the RAMLS reconstruction algorithm.
2.1.2.2: If FðpinÞFðpoutÞ < 0, find s� 2�0;1½ such that Fðpin þ s�ðpout � pinÞÞ ¼ 0 by the regula-falsi method.
2.1.2.3: Add p ¼ pin þ s�ðpout � pinÞ to Qhðt þ DtÞ if it has not been added previously (by another bi).

As stated in Step 2.1.2.3, it can happen that several spheres generate the same intersection point, as depicted in Fig. 13.
This is avoided by checking, while processing some given sphere bi, whether there already exists an intersection of the ray r
within bi, in which case the algorithm does not add a new intersection point. Notice that this procedure, together with the
sign test in Step 2.1.2.2, implies that only one intersection is considered per sphere and per ray. If two leaves of the surface
lie at a distance smaller than h, the intersection will not be computed and that part of the surface will be automatically
removed.

We have observed that the approximation properties of RAMLS surfaces deteriorate when there exist points that are
much closer to one another than the average spacing. This is the reason for Step 2.0.1 above. It is worth to mention that
all proximity queries in the method need to be performed with effective search algorithms based on tree structures (specif-
ically, we make intensive use of kd-tree structures [10]). Finally, notice that Step 2.1 can be made in parallel for each ray,
since they are independent. The proposed method is thus scalable.

5. Numerical results

5.1. Convergence tests

The error of the proposed method can be analyzed in terms of the error of the RAMLS reconstruction studied in Section
3.2. In fact:
Ray–spheres intersections: Three ray–sphere intersections produce the same zero on the surface. In this case we only perform the seek for the first
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DðSðt þ DtÞ;Shðt þ DtÞÞ ¼ DðSRAMLSðPhðt þ DtÞÞ;uðSðtÞÞÞ
¼ DðSRAMLSðuðQhðtÞÞÞ;uðSðtÞÞÞ
6 DðSRAMLSðuðQhðtÞÞÞ;uðShðtÞÞÞ þ DðuðShðtÞÞ;uðSðtÞÞÞ;
where Dð�; �Þ is the Hausdorff distance introduced in (21). For brevity, we have omitted the last two arguments in u, which
must be taken equal to t and t þ Dt, respectively (i.e.; uð�Þ ¼ uð�; t; t þ DtÞ). Now notice that the first term of the last member
is just the reconstruction error of the surface uðShðtÞÞ, because the points in QhðtÞ belong to ShðtÞ (in fact, QhðtÞ ¼ Rh \ShðtÞ
and the transport operation u is considered exact). If the time step is small enough, the continuity of u implies that uðQhðtÞÞ
is a point cloud sampling uðShðtÞÞ with average spacing ’ h, so that
DðSRAMLSðuðQhðtÞÞÞ;uðShðtÞÞÞ 6 C1hr ð54Þ
with r the rate of convergence studied in previous sections. By the same token,
DðuðShðtÞÞ;uðSðtÞÞÞ 6 ð1þ C2DtÞDðShðtÞ;SðtÞÞ ð55Þ
with C2 depending on the velocity field but not on h or Dt. We thus have
DðSðt þ DtÞ;Shðt þ DtÞÞ 6 C1hr þ ð1þ C2DtÞDðSðtÞ;ShðtÞÞ
and thus
DðSðtÞ;ShðtÞÞ 6 C3
hr

Dt
þ eC2tDðSð0Þ;Shð0ÞÞ; ð56Þ
so that the geometric error is Oðhr
=DtÞ, typical of semi-Lagrangian methods. If in the previous analysis the time-discretiza-

tion error in the computation of the trajectories is accounted for, the overall error becomes Oðhr
=DtÞ þ OðDtsÞ, with s the or-

der of the time integration method used for Eq. (42). In Table 1 we show the error of the proposed method with several
meshes and time steps. The problem considered is a full turn (rigid 2p-rotation) of the ellipsoid of Section 2.5.2 around
the x3-axis with angular velocity equal to 2p (it takes one time unit to make the turn). The specific error measure tabulated
is
DðSðTÞ;ShðTÞÞ: ð57Þ
These results are in good agreement with the error estimate (56).

5.2. Zalesak’s disk and Zalesak’s sphere

This well-documented tests of interface transport consist of the rigid body rotation of a slotted disk or sphere. In the 2D
case the disk is centered at (0.5, 0.75), has a radius of 0.15 and a slot of width 0.05 and length 0.25 in a squared domain (see
Fig. 14a). The velocity field is given by vðx1; x2Þ ¼ p

314 ð0:5� x2; x1 � 0:5Þ, so that a complete revolution takes 628 time units.
The time step is taken as Dt ¼ 1, and different values of h where taken. Notice that for any given mesh, for example the one
with h ¼ 1=512, the numerical method does not compute 5122 ¼ 262;144 nodal values at each time step. Instead, the pro-
posed method computes the intersections of 2� 512 ¼ 1024 rays with the RAMLS surface. The accuracy of this computation
(see Fig. 14e), which in the mean comprises 700 particles, looks equivalent to that of the PLS method [12] on a 100� 100
Eulerian grid with 12,864 particles (estimated under the assumption of 16 particles per narrow-band cell, as in [16]).

Table 2 presents quantitative results of one and two complete turns of the Zalesak’s disk. The accuracy of the RAMLS
method is similar to that of other state-of-the-art techniques. For instance, for one turn of the disk on a 100� 100 Eulerian
grid, Enright et al. [12] report an area error of 0.31%, whereas Hieber and Koumoutsakos [16] report 0.30%. Notice that the
order of the method goes asymptotically to 1, since the lack of smoothness of the disk makes this order the highest
attainable.

The Zalesak’s sphere test consists of a sphere of radius 0.15 initially centered at ð0:5;0:75;0:75Þ inside a unit cube, which
has a slot of width 0.10 and length 0.20 and rotates according to the velocity field vðx1; x2; x3Þ ¼ p

314 ð0:5� x2; x1 � 0:5;0Þ. The
time step is again Dt ¼ 1 and it takes 628 steps to complete one revolution. The shape of the sphere for t = 0, 79, 157, 236,
314, 393, 471, 550 and 628 is shown in Fig. 15. The adopted mesh size was h ¼ 1=256, leading to a number of particles in this
rigid-body rotation of 3D ellipsoid around x3-axis, one turn

h ¼ 12
32 h ¼ 12

64 h ¼ 12
128

0.06261 0.00494 0.00065
0.14635 0.01007 0.00246

6 0.34056 0.02561 0.00756

24 0.76286 0.07314 0.02352

96 1.00345 0.16459 0.06323



Fig. 14. Rotation of Zalesak’s disk: results after one turn: (a) original; (b) h ¼ 1=64; (c) h ¼ 1=128; (d) h ¼ 1=256; (e) h ¼ 1=512.

Table 2
Zalesak’s disk: RAMLS method (fixed time step, Dt ¼ 1)

h Area Area loss (%) Geometric errora Order

Exact 0.05811580 – – –
One turn 1/64 0.05880127 �0.17501 0.03485 N/A

1/128 0.05810201 0.02372 0.01409 1.30
1/256 0.05812257 �0.01166 0.00628 1.16
1/512 0.05811785 �0.00353 0.00335 0.90

Two turns 1/64 0.05859332 �0.82167 0.04470 N/A
1/128 0.05813988 �0.04144 0.02052 1.12
1/256 0.05812066 �0.00836 0.00833 1.29
1/512 0.05812647 �0.01835 0.00415 1.00

a As defined in (57).
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simulation of about 19,000. It can be noticed that the sharp edges of the solution get smoothed with time, but nevertheless
the shape and volume are well preserved.

It is worth to mention that in this study the proposed RAMLS-based method generates a new particle set at each time
step. This is certainly not necessary in the case of a rigid rotation, since the distance between the particles is preserved. If
the particles were simply advected, as in the Lagrangian methods of Hieber and Koumoutsakos [16] and Du et al. [11],
the final shape would practically coincide with the initial one.

5.3. Single vortex flow

We also test our method with the single vortex flow [6]. The initial geometry consists of a circle centered at (0.5, 0.75)
with radius equals to 0.15 in a square unit domain. This problem is useful to assess the capability of the method in preserving
mass, geometry and topology under severe deformations of the interface. The velocity field is given by
vðx1; x2Þ ¼ 2 sin2ðpx1Þ sinðpx2Þ; sin2ðpx2Þ sinðpx1Þ
� �

:

We take Dt ¼ 0:01 and discuss results for two grids (h ¼ 1=256 and h ¼ 1=512) considering t = 1, 3 and 5. The initial states
comprise 233 and 469 points, respectively. This last number compares favorably with the 4000 particles used in the Lagrang-
ian level-set method [16] and the 59,000 used in the PLS method [12]. It can be noticed in Fig. 16 that RAMLS results (blue
curves) closely approximate the exact solution (black curves) even when the filament is very thin. The accuracy of these re-
sults is similar to that of the most effective methods available (compare to Figs. 20 and 21 of [12], Fig. 11 of [16] and Fig. 8 of
[11]).



Fig. 15. Rotation of Zalesak’s sphere with h ¼ 1=256 (19,000 points/particles) and at times t = 0, 79, 157, 236, 314, 393, 471, 550 and 628 time units (from
left to right and from top to bottom).
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We also ran the single vortex flow test with the velocity field modulated in time by cosðpt=TÞ, so that it is reversed after
t ¼ T=2 and the exact interface moves back to its original configuration at t ¼ T. In our tests we consider T = 8 and 800 time
steps. Fig. 17 presents the interface shape yielded by the proposed method at t ¼ T for grid resolutions of 642, 1282, 2562 and
5122 (the exact shape coincides with the initial circle). In Table 3 we quantitatively assess these results in terms of area loss
and distance between the computed interface and the exact one. The obtained area loss for h ¼ 1=256, which turns out to be
of 0.36%, is quite similar to that obtained with previous methods at the same resolution [16,12]. The obtained order of con-
vergence is around 2, and not 3 as predicted by our error estimate (56). This is not surprising, since the tail filament is not
well resolved in any of the simulations, not even in the one corresponding to h ¼ 1=512. Finally, in Table 3, we also present
the L1 error:
1
2pR

Z 2p

0

f ðhÞ2 � R2

2

�����
�����dh; ð58Þ
where f ðhÞ denotes the distance from the center of the circle to the RAMLS curve and R is the radius of the circle. In order to
compute numerically this integral, we estimate f ðhÞ from a polygonalization of the RAMLS curve in a finer grid
(5000� 5000).

It can be seem that the convergence order obtained from L1 norm is around 2.5 and the error is one order of magnitude
smaller than the geometric error.

In Fig. 18 we plot the number of points as a function of time. It shows that the good accuracy obtained with h ¼ 1=256
needs just about 1500 points at maximum roll-up of the shape. Further, notice that the curve is symmetric and quite con-
tinuous. The point sets are enriched and depleted seemlessly as the interface stretches and contracts. In the computation
with h ¼ 1=128, for example, the point set starts with 118 points and ends with 128. This is an improvement with respect
to the Lagrangian level-set method [16], which starts with 1200 and ends with 2800.

To further assess the proposed method, we compare it to the front-tracking package FronTier of Du et al. [11], download-
able from the website http://frontier.ams.sunysb.edu/download. This package allows for adjustable time stepping, but to
simplify the comparison it was run with a fixed time step Dt ¼ 0:002. Since the interface is reconstructed every five time



Fig. 16. Solutions obtained with the proposed method for the deformation of a circle under the single vortex flow (in blue), for different meshes and times:
(a) h ¼ 1=256, t ¼ 1; (b) h ¼ 1=512, t ¼ 1; (c) h ¼ 1=256, t ¼ 3; (d) h ¼ 1=512, t ¼ 3; (e) h ¼ 1=256, t ¼ 5; (f) h ¼ 1=512, t ¼ 5. In black we plot the exact
solution (obtained by Lagrangian tracking of about 100,000 points) for comparison. The time step is Dt ¼ 0:01 for both meshes. (For interpretation of the
references in color in this figure legend, the reader is referred to the web version of this article.)
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steps, this leads to the same regeneration frequency as that used for our method (i.e., regenerating every 0.01 time units). In
Fig. 19 we compare the interface obtained with FronTier taking h ¼ 1=256, to that shown in Fig. 16c. The h parameter in the
FronTier package is roughly equivalent to that defined in our method, so that the comparison is meaningful. It can be ob-
served that our method is slightly more accurate near the head and the tail of the filament.

Turning to the time-modulated case, in Fig. 20 we show the result of FronTier and compare it to that of our approach,
taking h ¼ 1=256 for both codes. It can again be observed that the method proposed in this article is slightly more accurate,
which is not surprising since our representation of the surface is of higher order than that of FronTier. Regarding computa-
tional cost, FronTier was significantly faster than our code in this example, by a factor of about three. The lack of a connec-
tivity structure and the rather large number of neighboring points used in the computation of the surface explain this
observation. On the other hand, our RAMLS-based approach avoids the need of the sophisticated topology-reconstruction
step used in FronTier, which is unexpensive in 2D but becomes an issue in 3D, as assessed in the next example.



Fig. 17. Numerically obtained shapes at t ¼ T ¼ 8 for the single-vortex flow modulated in time, corresponding to grids with h ¼ 1=64 (green), h ¼ 1=128
(orange), h ¼ 1=256, (blue) h ¼ 1=512 (pink). The time step is Dt ¼ 0:01 in all runs. The exact solution (circle) is shown in black for comparison. (For
interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Single vortex flow: RAMLS method (modulated in time by cosðpt=TÞ, T ¼ 8 time units)

Grid cells Area Area loss (%) Geom. errora Order L1 error Order

Exact 0.07069 – – –
64 0.09724 �37.57 0.10649 N/A 0.04147 N/A

128 0.073988 �4.67 0.03247 1.71 0.00730 2.50
256 0.070943 �0.36 0.01044 1.64 0.00107 2.77
512 0.070676 0.013 0.00236 2.14 0.00018 2.59

a As defined in (57).
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5.4. Three-dimensional sphere deformation

In this section, we consider a deformation field in three dimensions. The initial interface Sð0Þ is a sphere of radius 0.15
centered at (0.35, 0.35, 0.35), the computational domain being the unit cube. The velocity field is given by
Fig. 18.
vðx1; x2; x3; tÞ ¼
2 sin2ðpx1Þ sinð2px2Þ sinð2px3Þ
� sinð2px1Þ sin2ðpx2Þ sinð2px3Þ
� sinð2px1Þ sinð2px2Þ sin2ðpx3Þ

0BB@
1CCA cos

pt
T

� �
:

Evolution of the number of points (or particles) in QhðtÞ along the 800 time steps in the single-vortex flow modulated in time, for different meshes.
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After t ¼ T ¼ 3 time units the exact interface recovers the geometry of the original sphere. This benchmark test has also been
considered by Enright et al. [12] and by Du et al. [11]. Fig. 21 shows numerical results at selected time steps corresponding to
h ¼ 1=512, Dt ¼ 0:02 and 150 time steps. The proposed method preserves the topology well. The final geometry is very close
to the original sphere, though with a small artifact (see Fig. 22).

If the mesh spacing is coarsened to h ¼ 1=256, it is still possible to obtain acceptable results, as shown in Fig. 23. Though
the shape at maximum distortion (t ¼ 1:5) is quite accurately reproduced, the numerical artifacts in the final shape are much
bigger than before. The FronTier code, which was run under equivalent conditions (fixed time step, 75 surface reconstruction
steps along the simulation), recovers the initial sphere much better (see Fig. 24). This is a consequence of the connectivity-
less definition of RAMLS surfaces. As the interface stretches, opposite sides of it come into close proximity and they interfere
with one another. The FronTier code does not suffer from this because opposite sides of the interface are topologically dis-
connected. On the other hand, the update and maintenance of a topologically valid connectivity is not free of charge. In this
example, the CPU time and memory needed by the FronTier code were 4 and 29 times greater, respectively, than those
needed by our code.

5.5. A test with change in topology

As a last study case, we test our front-tracking method in a problem with change in topology. To this end, the initial inter-
face Sð0Þ is the surface of an ‘‘open” ring as shown in Fig. 25a. This interface moves with homogeneous and constant normal
Fig. 19. Comparison of the proposed method (blue curve) with the front-tracking method FronTier (red curve) of Du et al. [11] for the deformation of a
circle under the single vortex flow at time t ¼ 3. For both codes the mesh size is h ¼ 1=256 and the points are regenerated every 0.01 time units. In black we
plot the exact solution (obtained by Lagrangian tracking of about 100,000 points for comparison). (For interpretation of the references in color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 20. Numerically obtained shapes at t ¼ T ¼ 8 for the single-vortex flow modulated in time. The mesh size is h ¼ 1=256 and the points are regenerated
every 0.01 time units. The blue curve refers to the RAMLS-based method, whereas the red refers to the FronTier solution. In black, we plot the exact solution.
(For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)



Fig. 21. Three-dimensional deformation of a sphere (h ¼ 1=512). From left to right and from top to bottom: Numerically obtained surfaces at t ¼ 0;10Dt,
20Dt, 30Dt, 40Dt, 50Dt, 60Dt, 70Dt, 90Dt, 110Dt, 130Dt, 150Dt, where Dt ¼ 3=150. The number of points (or particles) in the corresponding sets Ph are:
65,000, 73,790, 88,263, 136,299, 183,720, 228,456, 263,896, 280,663, 263,853, 183,932, 88,545 and 69,295.

Fig. 22. The interface of Fig. 21 at t ¼ 3 from another point of view. Notice the small spurious cusp.

Fig. 23. Three-dimensional deformation of a sphere (h ¼ 1=256). Results of the RAMLS-based method at t ¼ 0, t ¼ 1:5 and t ¼ 3.
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velocity equal to one, i.e., vðx; tÞ ¼ nðxÞ for all x 2SðtÞ, for each t. The radius of the ring is 0:3, its initial thickness is 0.02, the
grid size is h ¼ 1=64 and the time step is Dt ¼ 0:01.

Fig. 25 presents the results of this simulation, which was performed with the front-tracking algorithm as described in
Sections 4.1 and 4.2, with no case-specific tuning of any kind. The change in topology (coalescence) is handled without
any numerical disturbance, as is the case with level-set based Eulerian methods. For Lagrangian, surface-mesh-based
front-tracking methods, the simulation would have collapsed (or at least needed major mesh surgery, as in the reconstruc-
tion step of the FronTier code [11]) at the stage of Fig. 25d.



Fig. 24. Three-dimensional deformation of a sphere (h ¼ 1=256). Results of the FronTier code at t ¼ 0, t ¼ 1:5 and t ¼ 3.

Fig. 25. Results of the test with change in topology at times (a) 0, (b) 0.2, (c) 0.4, (d) 0.6, (e) 0.8, (f) 1.0, (g) 1.2 and (h) 1.4. The change in topology takes place
at t ¼ 0:6 (part (d) of the figure).
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The results of this test encourage the further development of the proposed method in such a way that a robust treatment
of topology changes can be guaranteed in any situation. In its present form, if the same case is run with a twice larger time
step, numerical artifacts pollute the solution.

The method also seems to suffer of some apparent ‘‘numerical surface tension” (see Figs. 25d–h). This should be properly
accounted for in the simulation of multiphase flows with significant surface tension effects.

6. Conclusions

The simulation of a mechanical problem with evolving interfaces needs specific methods for two distinct, independent
tasks: representing the interface along its evolution, and solving the corresponding equations in a time-varying domain.

Several unconnected point-set methods have already been proposed for the solution of fluid-mechanics problems, such as
Smoothed Particle Hydrodynamics, meshless methods and particle methods (see, e.g., [5,28,7,18,25,19] and references there-
in). These methods use particles over the whole domain, so that the two tasks mentioned above become coupled.

If, on the other hand, the task of interface representation is kept separate (to couple it with an Eulerian flow solver for
example), only a few methods based on unconnected point sets exist [43,12,16]. In this article, we have described a powerful
tool of representation of surfaces based on unconnected point sets, namely algebraic moving-least-squares (AMLS) surfaces.
To our knowledge, this technique has not been hereto applied to evolving interface problems. It can accurately represent 3D
shapes with a quite small number of points, requiring little regularity on their distribution (see Figs. 6b and 7). Further, we
introduced in this article the technique of RAMLS surfaces, a parameter-free variant of a technique developed by Guenne-
baud and Gross [15] to improve the robustness of the representation and reduce its computational cost, while maintaining
its accuracy (see Figs. 9 and 10).

There exist many ways in which a front-tracking method can be devised on the basis of RAMLS surfaces. The most imme-
diate one would be a purely Lagrangian motion of the points (or ‘‘particles”) that define the RAMLS surface. This would obvi-
ously require of periodic reseeding/deletion of points to keep the population well distributed over the interface. In this
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article, however, we have devised a method in which the point set is re-generated at each time step, locating the new points
at the intersections of a pre-defined collection Rh of lines (or ‘‘rays”) with the interface. This automatically maintains a good
distribution of points over the interface and provides a way to deal with topological changes. The idea behind this strategy is
that Rh could in fact be taken as the gridlines of an underlying Eulerian grid that is used for the flow solver. In this case, the
intersections of the gridlines with the interface are indeed needed by the flow solver and one would get the new point set at
no extra cost. Notice that in this way the particle distribution is automatically made consistent with that of the flow-solver
grid, and that extension to curvilinear Eulerian grids is immediate. Besides, in situations in which the intersections are not
needed by the solver the re-generation of the point set could be performed less often (as, e.g., in [11,16]) thus alleviating the
computational burden.

The numerous tests reported in the previous sections allow us to conclude that the proposed method of RAMLS represen-
tation of surfaces is competitive with previous methods in terms of accuracy and robustness. Further, the proposed front-
tracking method based on RAMLS surfaces proved to perform well in benchmarks of interface transport/stretching, in general
requiring significantly less particles than the Particle or Lagrangian level-set methods. It also compared favorably in terms of
accuracy with the front-tracking method FronTier introduced by Du et al. [11], which maintains a connectivity structure on
the set of marker particles.
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